
ARIA Guidelines 

Introduction 

HTML (HyperText Markup Language) was initially designed to create static text pages. JavaScript 
provides dynamic components which don’t exist in native HTML. The Accessible Rich Internet 
Applications (ARIA) standard provides developers with accessibility features not available in HTML alone. 

ARIA is a set of attributes (properties of HTML tags) that makes web content and applications more 
accessible. When it is not practical to use semantic HTML, ARIA can communicate semantic information 
and interactions to assistive technologies. ARIA communicates semantic information about widgets 
(User Interface (UI) elements), structures (relationships), and behaviours to assistive technology. A 
proper accessible experience depends on the appropriate use of this tool: misuse of ARIA can lead to 
poor or unusable experiences. 

ARIA attributes can make non-semantic HTML like <div>s more accessible when native code or 
underlying technology cannot. For example, suppose you are using an external library or framework that 
uses a <div> as a button. It may be easier to add an ARIA tag such as ‘role="button" to the component, 
rather than rewriting existing styles and functions. Consider this approach carefully, since you will also 
need to confirm that there is proper JavaScript in place to make the element accessible (e.g., ensure that 
it is focusable and define event handlers for click and key-down events). 

If you intend to enhance the accessibility of HTML with ARIA tags, please consult the authoring practices 
and the detailed examples below. To summarize the first rule of ARIA: If you can use HTML or semantic 
attributes, then do so. Another common expression is that good ARIA is better than no ARIA, but no 
ARIA is better than bad ARIA. 

Examples of when to use ARIA 

Landmarks 
• Landmarks define sections of a web page, which helps screen reader users navigate the page.

Landmarks can be defined either as HTML elements or with ARIA roles: A <header> landmark
can be replaced, if necessary, on any element (like a <div>) by adding role="banner".

• An <aside> landmark can be replaced with role="complementary".
• A <footer> landmark can be replaced with role="contentinfo".

ARIA Roles and JavaScript 
Some JavaScript frameworks generate web pages with non-semantic code, for example, a <div> 
element instead of a <button>. Adding the ARIA role="button" will improve provide semantic 
meaning to the <div>. 



When JavaScript is used to create special components that don’t exist natively in HTML, they may need 
to be given an ARIA role to define what they are. For example: 

• An accordion will be expanded and collapsed with a button which has this attribute: 
aria-expanded="true"/"false".

• A set of tabs within a web page will need role="tablist", role="tab", and 
role="tabpanel".

More examples can be found on the ARIA Authoring Practices site. 

Labels 
There are multiple ways to label a button – besides using onscreen text – for example: 

• An aria-label attribute with text specifying the label, i.e., aria-label="continue“.
• An aria-labelledby attribute can point to existing onscreen text as a label.
• An aria-describedby attribute can point from an input field to an inline error to connect them in 

a semantic (meaningful) way. A screen reader will automatically announce the error when the 
user tabs to the input field.

ARIA live regions 
An ARIA live region is a section of a web page that screen readers will automatically announce if 
its contents change dynamically after the initial page load. The live region provides important 
status messages. Code examples include: 

• role="alert" or aria-live="assertive" tells the screen reader to interrupt a current message to 
announce a dynamic content change.

• aria-live="polite" tells the screen reader to announce the updated live region after announcing 
the current content.

aria-hidden 
The aria-hidden="true" attribute tells screen readers to ignore an element and not announce it. Aria- 
hidden can be useful for content displayed on-screen but confusing for a screen reader user. 

For example: 

• An icon placed beside redundant text (like a garbage can icon with the word “Delete” beside it) 
since a user doesn’t need both to be announced.

• Background content that is greyed out when a popup takes over the page. When a popup takes 
over the page, a screen reader user won’t be reading the background page.

Resources 

• W3C WAI-ARIA Overview
• WAI-ARIA Authoring Practices 1.2

https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/TR/wai-aria-practices-1.2/

	Introduction
	Examples of when to use ARIA
	Landmarks
	ARIA Roles and JavaScript
	Labels
	ARIA live regions
	aria-hidden

	Resources



